• Maximizing Athletic Performance

    Advanced Arthroscopic Surgery

  • Rebuilding Reliable Joints

    Shoulder Replacement & Complex Reconstruction

  • Maximizing Shoulder Range of Motion

    Advanced Cartilage Restoration

  • Helping You Achieve Your Goals

    Patient Centered Care & Excellent Outcomes

  • Play
  • Pause
Home / Research » Vancomycin-bearing Synthetic Bone Graft Delivers rhBMP-2 and Promotes Healing of Critical Rat Femoral Segmental Defects

Vancomycin-bearing Synthetic Bone Graft Delivers rhBMP-2 and Promotes Healing of Critical Rat Femoral Segmental Defects

Skelly JD, Lange J, Filion TM, Li X, Ayers DC, Song J.  Vancomycin-bearing synthetic bone graft delivers rhBMP-2 and promotes healing of critical rat femoral segmental defects. Clinical Orthopaedics Related Research. 2014 Dec;472(12): 4015-23.


Abstract
Background: Bone grafts simultaneously delivering therapeutic proteins and antibiotics may be valuable in orthopaedic trauma care. Previously, we developed a poly(2-hydroxyethyl methacrylate)-nanocrystalline hydroxyapatite (pHEMA-nHA) synthetic bone graft that, when preabsorbed with 400-ng rhBMP-2/7, facilitated the functional repair of critical-size rat femoral defects. Recently, we showed that pHEMA-nHA effectively retains/releases vancomycin and rhBMP-2 in vitro. The success of such a strategy requires that the incorporation of vancomycin does not compromise the structural integrity of the graft nor its ability to promote bone healing. Questions/purposes: (1) To evaluate the ability of pHEMA-nHA-vancomycin composites in combination with 3-µg rhBMP-2 to repair 5 mm rat femoral segmental defects, and (2) To determine if the encapsulated vancomycin impairs the graft/rhBMP-2-assisted bone repair. Methods: pHEMA-nHA-vancomycin, pHEMA-nHA, or collagen sponge control with/without 3-µg rhBMP-2 were press-fit in 5 mm femoral defects in SASCO-SD male rats (289-300 g). Histology, microcomputed tomography, and torsion testing were performed on 8- and 12-week explants to evaluate the extent and quality of repair. The effect of vancomycin on the temporal absorption of endogenous BMP-2 and stromal cell-derived factor-1 was evaluated by immunohistochemistry. These factors are important for bone healing initiation and stem cell recruitment, respectively. Results: Partial bridging of the defect with bony callus by 12 weeks was observed with pHEMA-nHA-vancomycin without rhBMP-2 while full bridging with substantially mineralized callus and partial restoration of torsional strength was achieved with 3-µg rhBMP-2. The presence of vancomycin changed the absorption patterns of endogenous proteins on the grafts, but did not appear to substantially compromise graft healing. Conclusions: The composite pHEMA-nHA-vancomycin preabsorbed with 3-µg rhBMP-2 promoted repair of 5 mm rat femoral segmental defects. With the sample sizes applied, vancomycin encapsulation did not appear to have a negative effect on bone healing. Clinical relevance: pHEMA-nHA-vancomycin preabsorbed with rhBMP-2 may be useful in the repair of critical-size long bone defects prone to infections.
 
  • american-academy-orthopaedic-surgeons
  • american-orthopaedic-society-for-sports-med
  • Reserchgate
  • orthopaedic-research-society
  • american-arthroscopic-association-north-america
  • american-shoulder-and-elbow-surgeons
  • boston-medical-center
  • boston-university
  • boston-university-school-of-medicine
  • depuy-synthes
  • boston-university-orthopaedic-surgery
  • easter-orthopaedic-association
  • tornier